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Suppressing large excursions to a chaotic attractor using occasional feedback control
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In certain nonlinear systems, under appropriate conditions, the dynamical behavior switches intermittently
between two distinct chaotic states. We report the stabilization of the dynamics on a desired chaotic state using
an occasional feedback control via a map-based algorithm which can be easily implemented in experimental
situations where only one variable is observed. For the purpose of this paper implementation of the control
strategy is restricted to systems characterized by one-dimensional next-amplitude maps. Possible applications
are pointed outfS1063-651X96)51708-3

PACS numbe(s): 05.45+b

I. INTRODUCTION II. CONTROL STRATEGY

The control strategy used is similar to the one proposed

Since the advent of the OGM] control technique, cha- by In etal. and relies only on experimentally measured

otic behavior has been suppressed in various experimentgl,, ities. We restrict ourselves to its one-dimensional

situations[2—6]. These experiments use the original algo-jmnjementation and hence the only prerequisites are the fol-
rithm or its various modificationfl,7,8] to convert the ob- lowing:

served chaotic behavior to periodic responses. However, re- (j) The dynamics of the system can be represented by a
cently some work has been done in chaos anticof®elll.  nonlinear map given byX,,,=f(X,,P). In autonomous
This includes methods for sustaining chaos in systems exhilystems, such a map can be easily obtained, for example, by
iting intermittent chaotic behavior where chaotic response iglotting successive extrema from the time series of the ob-
interrupted by periodic episodes. This recent emphasis ogervable.
trying to maintain chaos is motivated by the fact that the (ii) Small variations in the control parameterabout the
destruction of chaotic behavior is undesirable in certain biosetpoint P, shift the position of the attractor but do not
logical systems. Some recent studies suggest that pathologihange the shape significantly.
cal destruction of chaotic behavior could be an underlying (i) Finally, there is at least one specific region of the map
reason for heart failurei2] and certain kinds of brain sei- (termed the “transition region/'that lies on the attractor and
zures[11]. which the system visits before executing the undesirable cha-
In this paper we wish to extend the concept of maintain-otic behavior.
ing chaos in dynamical systems that exhibit intermittency Once the return map has been obtained from the time
involving switching between two distinct chaotic states. InS€ries, for example, by plotting successive extrema, the tran-
the context of this paper it implies that the chaotic attractor i$/tion regions are determined by observing the iterates of the
a composite of two distinct pieces and the dynamics switc ystem as it approaches the unc_igswable_ Cha!o“c beha_mor.
intermittently between these two piecéstates. Such dy- he extent of each of these transition regions is determined

namical behavior is associated with systems exhibiting dete|py the d'sft.”bu“on. of p0|r_1ts in that region. We then p'-b'lﬁ.’
ministic crises the transition region to implement control on, whérg is

Usi irol strat imilar to th dbvi the interval in the return map composed of théh preiter-
sing a control strategy similar to the one proposed by INyieq \which occur before the undesirable chaotic gtatge-

et al, we were able to select and stabilize the dynamics o mplitude oscillationsis visited.

one of the two distinct piecegorresponding to a particular Then following the OGY[1] strategy we move the attrac-
state using an o_ccas_iorjal feedback control. The only preyi-tOr slightly by varying the control parameter and observe
ous effort involving similar control, that we are aware of, is {he resulting change in the location of the next iterate which
the work done by Nagai and L4L3]. They used a control cqrresponds to thenf—1)th preiterate before an excursion
strategy based on the technique of targefibd], to select (cqlledT,  ,). This allows us to calculatg defined as the

and stabilize a desirable chaotic state in the Ikeda map. HOWshift of the transition regionT,,_;) per unit change of the
ever, in contrast to the present work, their strategy is difficultyqnirql parameter,

to implement{13] in real experimental situations.

Besides possible application to biological systems SH(X. P)
[13,15, the present method could find application in any of g= —— =,
the various systems exhibiting deterministic crifg§—19. oP
In the following section we discuss the control strategy. In
Sec. lll, we present results from the implementation of the Now control is implemented when the system enters the
control algorithm to a numerical model for a chemical oscil-predesignated transition regidn,. Since the location and
lator and the standard Lorenz model. Finally in Sec. IV wethe extent of the regiof,,_, is known from previous obser-
offer a brief conclusion. vations, we can calculai,,_, defined as the minimum dis-
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FIG. 2. (a) Two-dimensional projection of the uncontrolled cha-
FIG. 1. (8 Uncontrolled time series of the state space variable otic attractor for the time series shown in Figall 75 000 iterates
plotted for the numerical model of a chemical oscillafgyg. (1)].  are plotted to obtain the attractdh) Two-dimensional projection
The value of the control parameter=0.134 is chosen so that the of the controlled chaotic attractor for the time series shown in Fig.
observed chaotic behavior is a composite of two states with distinct(b). 25 000 iterates are plotted to obtain the attractor.
amplitudes. Thest chosen for integration was 0.1 in dimensionless
units of time.(b) Controlled time series of the state space variable
plotted for the chemical oscillator. All large-amplitude oscillations parameter change can be subsequently reduced without any
are suppressed. The perturbations to the control parardeter |oss in efficiency by carefully examining the shape of the
achieve and maintain control were less than 0.5%3£0.134. transition regiong10].
To summarize, a perturbatiofP is added to the control
parameteP each time an iterate of the map enters the tran-
tance by which the attractor needs to be shifted such that th@ition regionT,, such that the next iterate falls outside the
next iterate of the return map falls out of the extent of thetransition regionT,_,. This avoids the occurrence of the
regionT,,_,. This distance q,,,_,) is translated into a cor- undesirable chaotic state corresponding to large-amplitude
responding parameter chang® given by 6P=d,,_,/g.  oscillations.
Following In et al. [10], we initially circumscribed the tran-
sition interval T,,_; by a circle of radiug ,,_; as the worst
case scenario, hence recalculating the desired parameter
change as

Ill. APPLICATION TO MODELS

We now apply the control strategy discussed in the pre-
ceding section to two model systems where the observed
chaotic behavior is a composite of two distinct states. In both
cases the fourth preiterate was chosen to implement control
such that the third preiteratand the subsequent undesirable
behavioy was precluded.

The first system is the model for a chaotic chemical os-
This change in paramet@P is an occasional feedback con- cillator [20] described by the following set of differential
trol allowing us to stabilize the desired chaotic state. Theequationq20]:

oP=2r,_4/9.
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FIG. 3. (a) Uncontrolled time series of the state space variable 10.0 \.
R PSP B PR T S S
plotted for the Lorenz model. The sy;tem pgrameterw&rézl.l, 40.0 46.0 50.0 56.0 60.0
p=35.0, andB3=1.0. Thest chosen for integration is 0.01 in dimen- (z...)
max/N

sionless units of time(b) Controlled time series for the Lorenz
system. The times series is devoid of large-amplitude oscillation
(z=48). The corrections to the control parameter were about 1-2% FIG. 4. (3) Return (next-maximum map for the uncontrolled
of op=12.1. time series in Fig. @&). About 5000 maxima are used to obtain the

return map.(b) Return map obtained using the time series in Fig.
= kjac—kya—kzab/(a+K)+k,d, 3(b) while the control is being implementg@000 maxima The

confinement of the size of the attractor in comparison(dpis
evident from the suppression of the second maximum in the return
map showing that the dynamics is being controlled on the chaotic
phase corresponding to the small-amplitude oscillations.

b=k,a—ksb+Kg, (1)

(.:: k7_ klaC_ kgC,
large- and small-amplitude oscillations. The corresponding

wherea, b, andc are the three independent variables dnd two-dimensional projection of the chaotic attractor is shown
is chosen to be the bifurcation parameter. For 0180 in Fig. 2(a). The different probability of orbit visits for the
<0.137 the system is chaoti20]. Upon decrease af, the  two distinct parts of the chaotic attractor is manifested by the
system undergoes an interior crisiglat 0.135 62, hence for contrast in the point density. We implemented the occasional
d=0.135 62 the amplitude of the chaotic behavior is smallfeedback strategy to try to eliminate the state corresponding
whereas for smalled small chaos is interrupted by episodes to the large-amplitude oscillations in the following manner.
of large-amplitude oscillations. The values of the other pa- From the maxima of the time series shown in Fitg) ve
rameters are chosen to be const@@] at (k;, k,, ks, K, mapped out the transition region in the attractor which the
K4, Ks, Kg, k7, kg)= (2, 0.4, 1.0, 0.0001, 0.002, 0.5, 0.0002, system visits as a precursor to exhibiting large-amplitude
0.005, 0.0068 oscillation. Then using the control strategy as discussed in

Figure ¥a) shows the time series of the state space varithe preceding section we observed the extent of these transi-
ablec atd=0.134(d was chosen to be the control param- tion regions T,,) and their shift per unit change of the con-
etep. The chaotic behavior observed is alternating betweerrol parameter ). This enabled us to calculate the pertur-
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bation (5d) (added tod, once the system iterate enters aclearly visible in the return map. Without the control the
predesignated transition regidn,) required to prevent the next-maximum map exhibits two maxinigig. 4(a)] the sec-
system from exhibiting the chaotic behavior correspondingond of which is not visited any more after switching on the
to large-amplitude oscillations. control [Fig. 4(b)], reflecting a confinement of the chaotic
Figure Xb) shows the time series for the model systemattractor. The regions corresponding to the excursion and the
while the control is being implemented. The system, by vir-ensuing behavior are eliminated.
tue of the control, is constrained to exhibiting small- The control as discussed earlier was implemented by
amplitude oscillations. Figure(B) shows the corresponding monitoring the location, extent and finally the shift of the
attractor which exhibits the confinement of the system dy+transition (T,,) regions.o was chosen to be the control pa-
namics to a region of the phase space. The typical changes iameter and successive maxima in the state space varable
the parameter value in order to achieve and subsequentlyere used for analysis. As before, the control is implemented
maintain control were always less than 0.5%dgf(typically ~ each time the trajectory entered a predetermined region of
6d=0.0002). the attractor. Perturbations of the order of 1—2¥pically
Next we report the application of the confinement to theso=0.01) were required to achieve control.
Lorenz model:
IV. CONCLUSIONS

X

EZU(y—X), The control strategy presented does not require any
knowledge of the underlying model. In fact, all the required

dy information can readily be obtained from experimental mea-

a=x(p—z)—y, (2 surement of a single observable. It should be possible to

extend the strategy to systems with higher embedding di-
dz mensions. This would involve monitoring transition regions
— =xy- Bz of higher dimensions. Control is therefore expected to be
dt achievable in experimental situations whenever two distinct

- chaotic states occur, as is the case, for example, after occur-
At low values of B8 (<0.7) the system exhibits small- rence of an interior crisig23).

amplitude chaos with a single maximum in the return map
[21,22, however, for3>0.71 the small oscillations are in-
terrupted by a large excursion, occurring more and more fre-

guently with increasing3. Here we chooségo, p, B]=[12.1, We would like to thank G. Ertl for helpful discussions and
35.0, 1.0. Figure 3a) shows the autonomous chaotic times R. W. Rollins of Ohio University for a critical reading of the
series. The large excursionz>48) are suppressed by the manuscript. One of ué?. P) acknowledges financial support
control [Fig. 3(b)]. Here the effect of the control is most from the Alexander von Humboldt foundation.
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