
Suppressing large excursions to a chaotic attractor using occasional feedback control

P. Parmananda and M. Eiswirth
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany

~Received 17 November 1995; revised manuscript received 20 May 1996!

In certain nonlinear systems, under appropriate conditions, the dynamical behavior switches intermittently
between two distinct chaotic states. We report the stabilization of the dynamics on a desired chaotic state using
an occasional feedback control via a map-based algorithm which can be easily implemented in experimental
situations where only one variable is observed. For the purpose of this paper implementation of the control
strategy is restricted to systems characterized by one-dimensional next-amplitude maps. Possible applications
are pointed out.@S1063-651X~96!51708-3#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Since the advent of the OGY@1# control technique, cha-
otic behavior has been suppressed in various experimental
situations@2–6#. These experiments use the original algo-
rithm or its various modifications@1,7,8# to convert the ob-
served chaotic behavior to periodic responses. However, re-
cently some work has been done in chaos anticontrol@9–11#.
This includes methods for sustaining chaos in systems exhib-
iting intermittent chaotic behavior where chaotic response is
interrupted by periodic episodes. This recent emphasis on
trying to maintain chaos is motivated by the fact that the
destruction of chaotic behavior is undesirable in certain bio-
logical systems. Some recent studies suggest that pathologi-
cal destruction of chaotic behavior could be an underlying
reason for heart failures@12# and certain kinds of brain sei-
zures@11#.

In this paper we wish to extend the concept of maintain-
ing chaos in dynamical systems that exhibit intermittency
involving switching between two distinct chaotic states. In
the context of this paper it implies that the chaotic attractor is
a composite of two distinct pieces and the dynamics switch
intermittently between these two pieces~states!. Such dy-
namical behavior is associated with systems exhibiting deter-
ministic crises.

Using a control strategy similar to the one proposed by In
et al., we were able to select and stabilize the dynamics of
one of the two distinct pieces~corresponding to a particular
state! using an occasional feedback control. The only previ-
ous effort involving similar control, that we are aware of, is
the work done by Nagai and Lai@13#. They used a control
strategy based on the technique of targeting@14#, to select
and stabilize a desirable chaotic state in the Ikeda map. How-
ever, in contrast to the present work, their strategy is difficult
to implement@13# in real experimental situations.

Besides possible application to biological systems
@13,15#, the present method could find application in any of
the various systems exhibiting deterministic crises@16–19#.
In the following section we discuss the control strategy. In
Sec. III, we present results from the implementation of the
control algorithm to a numerical model for a chemical oscil-
lator and the standard Lorenz model. Finally in Sec. IV we
offer a brief conclusion.

II. CONTROL STRATEGY

The control strategy used is similar to the one proposed
by In et al. and relies only on experimentally measured
quantities. We restrict ourselves to its one-dimensional
implementation and hence the only prerequisites are the fol-
lowing:

~i! The dynamics of the system can be represented by a
nonlinear map given byXn115f (Xn ,P). In autonomous
systems, such a map can be easily obtained, for example, by
plotting successive extrema from the time series of the ob-
servable.

~ii ! Small variations in the control parameterP about the
setpoint P0 shift the position of the attractor but do not
change the shape significantly.

~iii ! Finally, there is at least one specific region of the map
~termed the ‘‘transition region’’! that lies on the attractor and
which the system visits before executing the undesirable cha-
otic behavior.

Once the return map has been obtained from the time
series, for example, by plotting successive extrema, the tran-
sition regions are determined by observing the iterates of the
system as it approaches the undesirable chaotic behavior.
The extent of each of these transition regions is determined
by the distribution of points in that region. We then pickTm ,
the transition region to implement control on, whereTm is
the interval in the return map composed of themth preiter-
ates which occur before the undesirable chaotic state~large-
amplitude oscillations! is visited.

Then following the OGY@1# strategy we move the attrac-
tor slightly by varying the control parameterP and observe
the resulting change in the location of the next iterate which
corresponds to the (m21)th preiterate before an excursion
~calledTm21). This allows us to calculateg defined as the
shift of the transition region (Tm21) per unit change of the
control parameter,

g5
d f ~Xn ,P!

dP
.

Now control is implemented when the system enters the
predesignated transition regionTm . Since the location and
the extent of the regionTm21 is known from previous obser-
vations, we can calculatedm21 defined as the minimum dis-
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tance by which the attractor needs to be shifted such that the
next iterate of the return map falls out of the extent of the
regionTm21. This distance (dm21) is translated into a cor-
responding parameter changedP given by dP5dm21/g.
Following In et al. @10#, we initially circumscribed the tran-
sition intervalTm21 by a circle of radiusrm21 as the worst
case scenario, hence recalculating the desired parameter
change as

dP52rm21/g.

This change in parameterdP is an occasional feedback con-
trol allowing us to stabilize the desired chaotic state. The

parameter change can be subsequently reduced without any
loss in efficiency by carefully examining the shape of the
transition regions@10#.

To summarize, a perturbationdP is added to the control
parameterP each time an iterate of the map enters the tran-
sition regionTm such that the next iterate falls outside the
transition regionTm21. This avoids the occurrence of the
undesirable chaotic state corresponding to large-amplitude
oscillations.

III. APPLICATION TO MODELS

We now apply the control strategy discussed in the pre-
ceding section to two model systems where the observed
chaotic behavior is a composite of two distinct states. In both
cases the fourth preiterate was chosen to implement control
such that the third preiterate~and the subsequent undesirable
behavior! was precluded.

The first system is the model for a chaotic chemical os-
cillator @20# described by the following set of differential
equations@20#:

FIG. 1. ~a! Uncontrolled time series of the state space variablec
plotted for the numerical model of a chemical oscillator@Eq. ~1!#.
The value of the control parameterd50.134 is chosen so that the
observed chaotic behavior is a composite of two states with distinct
amplitudes. Thedt chosen for integration was 0.1 in dimensionless
units of time.~b! Controlled time series of the state space variablec
plotted for the chemical oscillator. All large-amplitude oscillations
are suppressed. The perturbations to the control parameterd to
achieve and maintain control were less than 0.5% ofd050.134.

FIG. 2. ~a! Two-dimensional projection of the uncontrolled cha-
otic attractor for the time series shown in Fig. 1~a!. 75 000 iterates
are plotted to obtain the attractor.~b! Two-dimensional projection
of the controlled chaotic attractor for the time series shown in Fig.
1~b!. 25 000 iterates are plotted to obtain the attractor.
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ȧ5k1ac2k2a2k3ab/~a1K !1k4d,

ḃ5k2a2k5b1k6 , ~1!

ċ5k72k1ac2k8c,

wherea, b, andc are the three independent variables andd
is chosen to be the bifurcation parameter. For 0.130,d
,0.137 the system is chaotic@20#. Upon decrease ofd, the
system undergoes an interior crisis atd50.135 62, hence for
d>0.135 62 the amplitude of the chaotic behavior is small,
whereas for smallerd small chaos is interrupted by episodes
of large-amplitude oscillations. The values of the other pa-
rameters are chosen to be constant@20# at (k1 , k2 , k3 , K,
k4 , k5 , k6 , k7 , k8)5 ~2, 0.4, 1.0, 0.0001, 0.002, 0.5, 0.0002,
0.005, 0.0068!.

Figure 1~a! shows the time series of the state space vari-
ablec at d50.134 ~d was chosen to be the control param-
eter!. The chaotic behavior observed is alternating between

large- and small-amplitude oscillations. The corresponding
two-dimensional projection of the chaotic attractor is shown
in Fig. 2~a!. The different probability of orbit visits for the
two distinct parts of the chaotic attractor is manifested by the
contrast in the point density. We implemented the occasional
feedback strategy to try to eliminate the state corresponding
to the large-amplitude oscillations in the following manner.

From the maxima of the time series shown in Fig. 1~a! we
mapped out the transition region in the attractor which the
system visits as a precursor to exhibiting large-amplitude
oscillation. Then using the control strategy as discussed in
the preceding section we observed the extent of these transi-
tion regions (Tm) and their shift per unit change of the con-
trol parameter (d). This enabled us to calculate the pertur-

FIG. 3. ~a! Uncontrolled time series of the state space variablez
plotted for the Lorenz model. The system parameters ares512.1,
r535.0, andb51.0. Thedt chosen for integration is 0.01 in dimen-
sionless units of time.~b! Controlled time series for the Lorenz
system. The times series is devoid of large-amplitude oscillation
(z>48). The corrections to the control parameter were about 1–2%
of s0512.1.

FIG. 4. ~a! Return ~next-maximum! map for the uncontrolled
time series in Fig. 3~a!. About 5000 maxima are used to obtain the
return map.~b! Return map obtained using the time series in Fig.
3~b! while the control is being implemented~2000 maxima!. The
confinement of the size of the attractor in comparison to~a! is
evident from the suppression of the second maximum in the return
map showing that the dynamics is being controlled on the chaotic
phase corresponding to the small-amplitude oscillations.
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bation (dd) ~added tod, once the system iterate enters a
predesignated transition regionTm) required to prevent the
system from exhibiting the chaotic behavior corresponding
to large-amplitude oscillations.

Figure 1~b! shows the time series for the model system
while the control is being implemented. The system, by vir-
tue of the control, is constrained to exhibiting small-
amplitude oscillations. Figure 2~b! shows the corresponding
attractor which exhibits the confinement of the system dy-
namics to a region of the phase space. The typical changes in
the parameter value in order to achieve and subsequently
maintain control were always less than 0.5% ofd0 ~typically
dd50.0002).

Next we report the application of the confinement to the
Lorenz model:

dx

dt
5s~y2x!,

dy

dt
5x~r2z!2y, ~2!

dz

dt
5xy2bz.

At low values of b ~,0.7! the system exhibits small-
amplitude chaos with a single maximum in the return map
@21,22#, however, forb.0.71 the small oscillations are in-
terrupted by a large excursion, occurring more and more fre-
quently with increasingb. Here we choose@s, r, b#5@12.1,
35.0, 1.0#. Figure 3~a! shows the autonomous chaotic times
series. The large excursions (z.48) are suppressed by the
control @Fig. 3~b!#. Here the effect of the control is most

clearly visible in the return map. Without the control the
next-maximum map exhibits two maxima@Fig. 4~a!# the sec-
ond of which is not visited any more after switching on the
control @Fig. 4~b!#, reflecting a confinement of the chaotic
attractor. The regions corresponding to the excursion and the
ensuing behavior are eliminated.

The control as discussed earlier was implemented by
monitoring the location, extent and finally the shift of the
transition (Tm) regions.s was chosen to be the control pa-
rameter and successive maxima in the state space variablez
were used for analysis. As before, the control is implemented
each time the trajectory entered a predetermined region of
the attractor. Perturbations of the order of 1–2%~typically
ds50.01! were required to achieve control.

IV. CONCLUSIONS

The control strategy presented does not require any
knowledge of the underlying model. In fact, all the required
information can readily be obtained from experimental mea-
surement of a single observable. It should be possible to
extend the strategy to systems with higher embedding di-
mensions. This would involve monitoring transition regions
of higher dimensions. Control is therefore expected to be
achievable in experimental situations whenever two distinct
chaotic states occur, as is the case, for example, after occur-
rence of an interior crisis@23#.
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